Evaluation dosimétrique des expositions au radon :

Approche de la CIPR

ARRAD Fribourg, 30 Novembre 2018

François Paquet

1. Le radon est un gaz chimiquement inerte,

Mais ses descendants interagissent avec les tissus biologiques

2. L'inhalation de radon s'accompagne de l'inhalation des descendants

1. Le radon est un gaz chimiquement inerte

2. L'inhalation de radon s'accompagne de l'inhalation des descendants

Déterminer les expositions au radon nécessite de connaitre la concentration de ses descendants dans l'air inhalé

3. Les concentrations respectives du radon et de ses descendants dans l'air sont très variables.

Devenir des descendants du radon

Devenir des descendants du radon

Distribution en taille des aerosols des descendants du radon

Distribution en taille des aerosols des descendants du radon

Devenir des descendants du radon

3. Les concentrations respectives de radon et de ses descendants sont très variables.

Exprimées par le facteur d'équilibre F

Facteur d'équilibre, F

F est la mesure du degré de déséquilibre entre le gaz radon et ses descendants

F=1		F=0.3			
Nuclide	Bq m ⁻³	Nuclide	Bq m⁻³		
²²² Rn gas	1.0	²²² Rn gas	1.0		
²¹⁸ Po	1.0	²¹⁸ Po	0.6		
²¹⁴ Pb	1.0	²¹⁴ Pb	0.3		
²¹⁴ Bi	1.0	²¹⁴ Bi	0.2		

La valeur de F depend du taux de ventilation :

Air intérieur :	F ≈ 0.4	ventilation naturelle
Mines :	F ≈ 0.2	ventilation forcée

Les particularités du radon (suite)

4. La concentration et l'exposition au radon sont exprimées selon différentes façons :

- Gaz radon seul, exprimé en Bq m⁻³
- Niveau des descendants, exprimé en concentration d'énergie alpha potentielle (somme d'energie alpha de tous les descendants; PAEC). En J m⁻³ ou en WL

Exposition au Rn et ses descendants intégrée sur le temps est exprimée en Bq h m⁻³ et J h m⁻³ ou WLM

$1 \text{ Bq h m}^{-3} = \text{F x } 1.57 \text{ x } 10^{-6} \text{ WLM}$

Les particularités du radon (suite)

Contrôler l'exposition au radon est donc complexe et nécessite des données sur les descendants, pas toujours disponibles ou mesurables facilement

Plusieurs approches ont été adoptées au fil du temps

Les travaux de la CIPR sur le sujet

Publication 65 (1993)

Protection against Radon-222 at home and at work

Publication 103 (2007)

Publication 115 (2010)

ans

Recommendations

Lung Cancer Risk from Radon and Progeny + Statement on Radon

Publication 126 (2014)

Publication 137 (2017)

Radiological Protection against Radon Exposure

Occupational Intakes of Radionuclides, Part 3

Les travaux de la CIPR sur le sujet

Publication 65 Protection against Radon-222 at home and at work (1993)

Publication de coefficients de conversion, fondés sur les données épidémiologiques

Compare un risque par WLM à un risque (ou détriment) par Sv

donne Sv par WLM

Les coefficient de conversion de dose CIPR 65 (1993)

Compare risque de cancer chez les mineurs (LEAR) 2.83 x 10⁻⁴ par WLM

Au détriment total (cancer et effets héréditaires) de la CIPR 60 (1991):

- Travailleurs 5.6 x 10⁻² par Sv
- Public 7.3 x 10⁻² par Sv

- 5 mSv par WLM
 - 4 mSv par WLM

Les travaux de la CIPR sur le sujet

- Publication 65 (1993) Protection against Radon-222
 at home and at work
- Publication 103 (2007) Recommendations

Evolution du detriment par Sv entre les *Publication 60 et 103*

Publication 60 (1991)

	Cancer	Total	Hereditary	Total
	Lung	Total		\frown
Workers	0.6	4.8	0.8	5.6
Public	0.8	6.0	1.3	7.3
Publication 103 (2007)				
Workers	1.2	4.1	0.1	(4.2)
Public	0.9	5.5	0.2	5.7

Le coefficient en Sv par WLM augmente mécaniquement (30% environ)

Les travaux de la CIPR sur le sujet

- Publication 65 (1993) Protection against Radon-222
 at home and at work
- Publication 103 (2007) Recommendations
- Publication 115 (2010) Lung Cancer Risk from Radon and Progeny + Statement on Radon

Conclusions de la Publication 115

La Publication 115 propose d'ajuster le coefficient de risque nominal à 5 10⁻⁴ WLM⁻¹ (au lieu de 2.83 10⁻⁴ WLM⁻¹)

Nouveaux coefficients selon l'approche épidémiologique

En utilisant 5 x 10⁻⁴ par WLM pour le risque de cancer du poumon

Travailleurs	4.2 x 10 ⁻² Sv ⁻¹	12 mSv WLM ⁻¹
Public	5.7 x 10 ⁻² Sv ⁻¹	9 mSv WLM ⁻¹

Publication 65 (rappel)

Travailleurs

Public

5 mSv WLM⁻¹ 4 mSv WLM⁻¹

Doublement des coefficients de conversion

Conclusions du "Statement on Radon" (ICRP Publication 115)

Abaisser la valeur haute du niveau de reference pour les habitats de 600 Bq m⁻³ à 300 Bq m⁻³

Spécifier la valeur de 1000 Bq m⁻³ comme point d'entrée pour appliquer les règles de protection des travailleurs

Produire des coefficients de dose en utilisant une approche dosimétrique (comme pour tous les autres RN)

Les travaux de la CIPR sur le sujet

- Publication 65 (1993) Protection against Radon-222
 at home and at work
- Publication 103 (2007) Recommendations
- Publication 115 (2010) Lung Cancer Risk from Radon and Progeny
 + Statement on Radon
- Publication 126 (2014) Radiological Protection against Radon Exposure

Radiological Protection against Radon Exposure Publication 126 (2014)

Application du système de protection pour les expositions au radon dans l'habitat et dans les lieux de travail

Gestion basée sur optimisation à partir d'un niveau de référence (300 Bq m⁻³ dans l'habitat)

Approche intégrée quel que soit le lieu

Approche graduée sur les lieux de travail

Les travaux de la CIPR sur le sujet

- Publication 65 (1993) Protection against Radon-222
 at home and at work
- Publication 103 (2007) Recommendations
- Publication 115 (2010) Lung Cancer Risk from Radon and Progeny
 + Statement on Radon
- Publication 126 (2014) Radiological Protection against Radon Exposure
- Publication 137 (2017) Occupational Intakes of Radionuclides, Part 3

Occupational Intakes of Radionuclides, Part 3 (ICRP Publication 137)

3^{eme} volume d'un série visant à réviser tous les coefficients de dose des travailleurs, après exposition par inhalation et ingestion

Occupational Intakes of Radionuclides

- **OIR1** (P130) Introduction et modèles généraux
- OIR2 (P134) H, C, P, S, Ca, Fe, Co, Zn, Sr, Y, Zr, Nb
- **OIR3** (P137) Ru, Sb, Te, I, Cs, Ba, Ir, Pb, Bi, Po, **Rn**, Ra, Th, U
- **OIR4** Lanthanides et Actinides
- **OIR5** Tous les autres RN

Human Respiratory Tract Model, Publication 66 (1994), révisé dans OIR P1

Extrathoracic airways

Bronchial

Bronchiolar Alveolar interstitial

Les particularités du radon (rappel)

1. Le radon est un gaz chimiquement inerte

2. L'inhalation de radon s'accompagne de l'inhalation des descendants

3. Les concentrations respectives de radon et de ses descendants sont très variables.

4. L'exposition au radon est exprimée selon différentes façons

Les particularités du radon (rappel)

1. Le radon est un gaz chimiquement inerte

2. L'inhalation de radon s'accompagne de l'inhalation des descendants

3. Les concentrations respectives de radon et de ses descendants sont très variables.

4. L'exposition au radon est exprimée selon différentes façons

En conséquence, les coefficients de dose du Rn sont donnés :

- pour le gaz radon et pour l'ensemble radon + descendants
- pour des "conditions environnementales types" (avec des F et des modes de formation "de référence") (ex. mine, bureau, spas, grottes, maison,..)

1. Cas du gaz radon

Modèle biocinétique du radon

Fig 12.2. Structure of the biokinetic model for systemic radon. Abbreviations: RT-air = respiratory tract air; Blood-A = arterial blood; Blood-V = venous blood; Breast_g = glandular breast tissue; Breast_a = adipose tissue in breast;

Modèle biocinétique du radon

Inhalation : gaz dissous dans sang, transféré aux tissus, repris dans le sang puis exhalé.

Distribution dans tissus selon le taux de perfusion sanguine, le volume des tissus, la solubilité dans les tissus. La graisse accumule plus que les autres tissus

Période biologique estimée à partir d'ingestion Rn Varie de17 à 400 min selon l'activité (débit respiratoire), le contenu stomachal et le % de graisse

Modèle biocinétique du radon

Figure 12.4. Comparison of model predictions and observations of the exhalation rate of radon following continuous exposure to a high concentration of radon in air

for 8.5 hours

Coefficients de dose pour le gaz radon

Inhalation ou ingestion Radon-222 (Radon) Radon-220 (Thoron) Radon-219 (Actinon)

dose efficace doses equivalente aux organes

Nuclide	Physical half-life, T_{γ_2}	Effective dose			
		Sv per Bq	mSv per Bq h m ^{-3 a}		
Rn-222 (radon)	3.8 d	4.4E-10	1.8E-7		
Rn-220 (thoron)	56 s	1.8E-10	-		
Rn-219 (actinon)	4.0 s	4.8E-11	-		

Table 12.5 Effective dose coefficients following the inhalation of radon gas alone. ^a This is the effective dose rate following chronic exposure to unit concentration of radon after the radon concentration in organs and tissues have reached saturation (i.e. equilibrium).

2. Cas des descendants du radon

Construits à partir des modèles du polonium, du bismuth, du plomb, du thallium

Modifiés pour tenir compte des compartiments spécifiques au radon (graisse, etc...)

B/ Définition des principaux paramètres

- Le taux de respiration
 - 1.2 m³ h⁻¹ pour les travailleurs

B/ Définition des principaux paramètres

- Le taux de respiration
- Les caractéristiques des aérosols
 - fraction libre
 - distribution en taille

Distribution des aerosols en fonction de leur taille

Distribution des aerosols en fonction de leur taille

Distribution des aerosols en fonction de leur taille

Distribution en taille des aerosols des descendants du radon

Distribution en taille des aerosols des descendants du radon: cas de l'air intérieur

Caractéristiques de référence des aerosols des descendants du radon

Exposure scenario	f _p	F			Attache the am	ed aero bient a	sol chara ir ^c	acteristi	cs in
			Mode	f _p	AMTD _i	σ_{qi}	Density,	Shape	hgf _i
					(nm)	0	ρ_i	factor,	
							(g cm ⁻³)	χ _i	
Indoor	0.08	0.4	n	0.2	30	2.0	-	-	2.0
workplace			а	0.8	250	2.0	-	-	2.0

Table A.3. Reference aerosol parameter values for differentexposure scenarios for ²²²Rn progeny.

Caractéristiques de référence des aerosols des descendants du radon

f _p	F	Attached aerosol characteris the ambient air ^c					acteristi	cs in
		Mode	f _p	AMTD _i (nm)	σ_{gi}	Density, ρ _i (g cm ⁻³)	Shape factor, γ:	hgf _i
0.08	0.4 0.2	n a a	0.2 0.8 1.0	30 250 250	2.0 2.0 2.0	- - 0.7 ^d	- - 1.0 ^d	2.0 2.0 1.0
	f _p 0.08 0.01	fpF0.080.40.010.2	F Mode 0.08 0.4 n 0.01 0.2 a	fp F Mode fp Mode 0.00 0.4 n 0.2 0.8 0.01 0.2 a 1.0 1.0	\mathbf{f}_p \mathbf{F} \mathbf{F} AttachesticationMode f_p $AMTD_i$ (nm)0.080.4n0.2300.010.2a1.0250	\mathbf{f}_p \mathbf{F} \mathbf{F} \mathbf{Mode} \mathbf{f}_p \mathbf{AMTD}_i (nm) σ_{gi} 0.08 0.4 n 0.2 30 0.8 2.0 250 2.0 0.01 0.2 a 1.0 250 2.0	\mathbf{f}_p \mathbf{F} \mathbf{F} \mathbf{A} \mathbf	f_p F f_p Attached aerosol characteristi the ambient aircMode f_p $AMTD_i$ (nm) σ_{gi} $Density,$ ρ_i (g cm ⁻³) $Shape$ factor, χ_i 0.080.4n0.2302.00.010.2a1.02502.00.7d1.0d

Table A.3. Reference aerosol parameter values for differentexposure scenarios for ²²²Rn progeny.

Caractéristiques de référence des aerosols des descendants du radon

Exposure f _p F scenario			Attached aerosol characteristics in the ambient air ^c						
			Mode	f _p	AMTD _i (nm)	σ _{gi}	Density, ρ _i (α cm ⁻³)	Shape factor,	hgf _i
Indoor workplace	0.08	0.4	n a	0.2 0.8	30 250	2.0 2.0	-	~	2.0 2.0
Mine	0.01	0.2	а	1.0	250	2.0	0.7 ^d	1.0 ^d	1.0
Tourist cave	0.15	0.4	а	1.0	200	2.0	1.0	1.0	1.0

Table A.3. Reference aerosol parameter values for differentexposure scenarios for ²²²Rn progeny.

Dépôt des aerosols "de reference" dans l'arbre bronchique

Exposure scenario	Mode	Deposition in regions (%)						
		ET ₁	ET ₂	BB	bb	ΑΙ	Total	
AII	u	51.91	27.96	7.93	10.05	0.59	98.43	
Indoor workplace	n	3.85	2.08	0.93	6.53	27.90	41.29	
	а	10.68	5.75	0.60	1.42	9.05	27.51	
Mine	а	3.16	1.70	0.41	2.16	9.94	17.37	
Tourist cave	а	3.42	1.84	0.47	2.61	11.94	20.28	

Table A.6. Deposition of inhaled ²²²Rn progeny aerosols in respiratory tract regions. 'u' = unattached mode, 'n' = nucleation mode, and 'a' = accumulation mode.

B/ Définition des principaux paramètres

- Le taux de respiration
- Les caractéristiques des aérosols
 - fraction libre
 - distribution en taille
- Le facteur d'équilibre, défini comme:
 - -0,2 dans les mines
 - -0,4 dans l'habitat et dans les grottes

B/ Définition des principaux paramètres

- Le taux de respiration
- Les caractéristiques des aérosols
 - fraction libre
 - distribution en taille
- Le facteur d'équilibre
- Le modèle géométrique des voies aériennes

Modèle géométrique des voies aériennes (HRTM)

Coefficients de dose pour Rn + descendants

	Facteur équilibre	Fraction libre, %	Dose efficace mSv par WLM
Bureaux	0.4	8	21
Mines	0.2	1	12
Grotte touristique	0.4	15	24
Habitat	0.4	8	14

Coefficients de dose pour Rn + descendants

	Facteur	Fraction	Dose efficace
	équilibre	libre, %	mSv par WLN
Bureaux	0.4	8	21 (a)
		faible débit respiratoire	e 14 (b)
Mines	0.2	1	12
Grotte touristique	0.4	15	24
labitat	0.4	8	14
(a) ICRP reference breath	iing rate est 1.2 m ³	³ h ⁻¹ (⅓ assis, ⅔ exercise lége	r)
(b) Plus faible debit respire	atoire de 0.86 m ³	h⁻¹ (⅔ assis, ⅓ exercise léger))

Comparison entre les approches dosimétriques et épidémiologiques

	Dose efficace		
	mSv par WLM	mSv par mJ h m ⁻³	
Dosimetrie			
Mine	11	3.1	
Bureaux	20	5.6	
raible debit respiratoire	14	3.9	
Grotte touristique	23	6.6	
Habitat	13	3.6	
Epidémiologie			
Travailleurs	12	3.4	
Public	9	2.6	

 $1 \text{ WLM} = 3.54 \text{ mJ h m}^{-3}$

Coefficients de dose pour Rn + descendants

- 3 mSv par mJ h m⁻³ (approx. 10 mSv par WLM) dans la majorité des cas,
- 6 mSv par mJ h m⁻³ (approx. 20 mSv par WLM) pour les grottes et les travaux demandant une activité physique conséquente

Tous les details de calculs sont donnés en annexe, permettant une modulation (sous couvert de l'accord de l'organisme de regulation !!!) de ces coefficients en fonction de données plus précises sur le facteur d'équilibre et/ou les caractéristiques des aérosols

Exemple de données fournies

Figure A.5. Effective dose per WLM as a function of particle size of a monodisperse aerosol for a Reference Worker with an average breathing rate of 1.2 m³ h⁻¹ following exposure to radon (²²²Rn) progeny. Unit density and unit shape factor were assumed and hygroscopic growth was not taken into account.

Exemple de données fournies (suite)

	Unattached fraction, <i>f</i> p	Effective dose ^(a) (mSv per WLM)	
Mine	0.01	[86. <i>f</i> _p + (1- <i>f</i> _p).10]	11
Indoor workplac	e 0.08	[86. <i>f</i> _p + (1- <i>f</i> _p).14]	20
Tourist cave	0.15	[86. <i>f</i> _p + (1- <i>f</i> _p).12]	23

Résumé

- Les coefficients de dose ont été calculés pour la première fois, en prenant en compte le modèle pulmonaire de la CIPR
- Ces coefficients sont remarquablement similaires à ceux dérivés par l'approche épidémiologique
- Les coefficients de dose recommandés sont de 3 mSv par mJ h m⁻³ (approx. 10 mSv WLM⁻¹) pour la plupart des cas; 6 mSv par mJ h m⁻³ (approx 20 mSv WLM⁻¹) pour les grottes et le travail demandant une activité physique particulière
- Possibilité de calculer des coefficients site spécifique en cas de données établies.
- Le premier controle de l'exposition au radon se fait au travers la valeur de référence < 300 Bq m⁻³ (= 4 mSv y⁻¹ au travail, 14 mSv y⁻¹ à la maison)

www.ICRP.org

Coefficients de dose pour Thoron + descendants

Exposure / Place	Unattached fraction f	Effective dose per exposure			
	naction, i _p	mSv per WLM	mSv per mJ h m ⁻³	mSv per Bq h m ⁻³	
Thoron (²²⁰ Rn) progeny:					
Indoor workplace	0.02	5.6	1.6	1.2 × 10 ⁻⁴	
Mine	0.005	4.8	1.4	1.0 × 10 ⁻⁴	

Lung apportionment cf. average lung dose

Lung apportionment factors : AF

E per WLM = 12 mSv

Using average lung dose = 0.6 mSv

Annual dose reference level

Effective dose of 6 mSv per year corresponds to an average radon concentration of:

• 450 Bq m⁻³

- ➢ effective dose coefficient of 3.0 mSv per mJ h m⁻³
- > appropriate for most indoor workers.

• 225 Bq m⁻³

effective dose coefficient of 6.0 mSv per mJ h m⁻³

> appropriate for tourist caves and indoor workers engaged in substantial physical activity.

Assuming an occupancy of 2000 h y⁻¹ and F=0.4