Canton de Vaud

ARRAD, Journée thématique 2 février 2017 – HEPIA, Genève

Outils et défis en radioprotection :

L'œil du physicien médical

Nick Ryckx

Physicien médical SSRPM Institut de radiophysique

Sommaire

- Physique médicale en radiodiagnostic
 - Tomodensitométrie
 - Radioscopie
 - Médecine nucléaire
- Défis à venir
- Conclusion

Sommaire

- Physique médicale en radiodiagnostic
 - Tomodensitométrie
 - Radioscopie
 - Médecine nucléaire
- Défis à venir
- Conclusion

Historique

- ORaP, art. 74 al. 7 : radiodiagnostic
 - Entré en vigueur le 1^{er} janvier 2008
 - « Pour les applications en <u>médecine nucléaire</u> et en radiologie interventionnelle par <u>radioscopie</u> ainsi que pour la <u>tomodensitométrie</u>, le titulaire de l'autorisation doit faire appel périodiquement à un physicien médical selon l'al. 4. »

Sommaire

- Physique médicale en radiodiagnostic
 Tomodensitométrie
 - Radioscopie
 - Médecine nucléaire
- Défis à venir
- Conclusion

Reconstruction itérative

- Première instance : Fantôme Catphan® 600

 Standard en CT
- Métriques physiques "classiques"
 - Excellentes pour QA (stabilité)
 - Ne s'appliquent plus en reconstruction itérative
- Pourquoi ?
 - Algorithmes non linéaires
 - Bruit définitivement plus stationnaire

Comment qualifier la qualité d'image ?

Notre approche (depuis 2014)

 QA : tâche dévolue aux constructeurs – Contrôles par pointage

- Qualité d'image
 - Modèle d'observateur
- Utilisation clinique
 - Demande d'examens par indication

Modèles d'observateur

- Quatre éléments fondamentaux
 - Tâche clinique
 - Détection, localisation, estimation, ...
 - Série d'images
 - Statistiquement significatif
 - Observateur
 - Humain ou mathématique
 - Figure de mérite
 - Qualifie la performance de l'observateur

8

Modèles d'observateurs

- Fantôme anthropomorphe
 Sphères à bas contraste
 - Acquisition/reconstruction
 - Protocoles d'inter-comparaison et abdomen local

Sketch of the complete anthropomorphic QRM-Abdomen (height 100 mm).

Variable décision \rightarrow courbe ROC

Résultats

11

Sommaire

- Physique médicale en radiodiagnostic
 - Tomodensitométrie
 - Radioscopie
 - Médecine nucléaire
- Défis à venir
- Conclusion

Enjeux en radioscopie

- Dose au personnel
 - Irradiation par le rayonnement diffusé
- Dose au patient
 - Risques stochastiques à minimiser
 - Risques tissulaires (brûlures) à éviter
- Qualité d'image
- Thématiques fortement intriquées

Dose au personnel

- Système de dosimétrie électronique
 - DoseAware (Philips Healthcare)
 - Débit temps réel
 - Calibration : Hp(10)
 - Sur le tablier plombé
 - Retour personnalisé

Source : Philips Healthcare

Images en temps réel du système d'imagerie

Avant une acquisition LLAT, le tube RX soulève le paravent d'environ ~10cm.

Débit de dose maximal : ~50 mSv / h Cet événement unique : 68 % de la dose totale à l'opérateur 16 Le cardiologue remarque ceci et repositionne le paravent correctement.

Débit de dose maximal : ~2 mSv / h Réduit d'un facteur ~25

Système DoseAware

- Excellent, mais dans un but pédagogique
- Rapport ORAMED sur le cristallin
 - Réponse en dose
 - Dévie d'un facteur ~2
 - Mesures in situ
 - Mauvaise réponse angulaire

Source : Philips Healthcare

DMC 3000

- Dosimètre électronique d'alarme
 - Mirion Technologies (Marseille, FR)
 - Calibration: Hp(10)
 - Rattachement METAS
 - Sur le tablier plombé
 - Meilleure rép. angulaire (mais - que les TLD)

Source : Mirion Technologies

Défi des mises à jour techniques

- CHUV : Upgrade des installations d'angio.
 - Réduction de dose d'un facteur 4
 - Maintien de la qualité d'image
- Résultats
 - Angiographie cérébrale et périphérique
 - Imagerie statique
 - Satisfaction des utilisateurs
 - Angiographie cardiaque
 - Beaucoup de mouvement
 - Utilisateurs moins satisfaits

Imagerie dynamique

- Modèle d'observateur
 - Repérage d'objets fins en mouvement

Sommaire

- Physique médicale en radiodiagnostic
 - Tomodensitométrie
 - Radioscopie
 - Médecine nucléaire
- Défis à venir
- Conclusion

Administration de microsphères chargées en Y-90 (β-) par cathétérisme - artère fémorale

- artère hépatique

Importance de l'optimisation d'image en SIRT Traitement du carcinome et métastases hépatiques

Fluoroscopie préparatoire

SPECT Bremsstrahlung

Phase préparatoire : Simulation du traitement

SPECT MAA Tc-99m

Rapport du signal entre région perfusée tumorale et reste du foie non tumoral

Contrôle post-traitement PET Y-90 quantitatif Estimation de la dose délivrée suite au traitement

Exemple 1 : Mesure du rapport du signal tumeur/non-tumoral en imagerie 99mTc-MAA SPECT pour l'évaluation de faisabilité de SIRT

Acquisition ⁹⁰Y PET : Fantôme foie anthropomorphe

STD + TOF

D + PSF

Etude de l'impact du TOF et de la PSF

STD + TOF + PSF

Sommaire

- Physique médicale en radiodiagnostic
 - Tomodensitométrie
 - Radioscopie
 - Médecine nucléaire
- Défis à venir
- Conclusion

Big data

- Logiciels de collecte de dose
 - Collecte des doses à large échelle
 - Utilisés pour MàJ NRD
 - CT
 - Radioscopie
 - CT en médecine nucléaire (imagerie hybride)
 - Problème
 - Manque de bons outils d'analyse
 - Utilisation peu pertinente
 - Flux de données trop important

Communication

- Patients et personnel cherchent de l'info
 - Beaucoup de désinformation
 - Idées faussées sur les risques radiologiques

- But : rationnaliser le risque
 - Méthodes objectives
 - Communication non biaisée
 - Combattre les comportements irrationnels

Sommaire

- Physique médicale en radiodiagnostic
 - Tomodensitométrie
 - Radioscopie
 - Médecine nucléaire
- Défis à venir
- Conclusion

Conclusion

- Actuellement, beaucoup de solutions...
 - -... logicielles
 - Reconstruction itérative en CT
 - Traitement d'image en radioscopie
 - TOF/PSF en médecine nucléaire
 - -... physiques
 - Protections individuelles/collectives
 - Dosimètres actifs
- Question : qu'est-ce qui est pertinent ?

Conclusion

- Court terme
 - Développer une expertise clinique
 - Optimisation
 - Doses patient/personnel
 - Qualité d'image maintenue
 - » Pas de baisse de dose à tout prix
 - Formation continue
 - Adaptation aux exigences cliniques
 - Marge de sécurité dans la détection des structures critiques à moindre exposition

Conclusion

- Long terme
 - Relais entre utilisateurs et constructeurs
 - Pas de mesures redondantes
 - Proposition techniques
 - Optimisation dose
 - Optimisation qualité d'image
 - Proposer évaluation objective
 - Pertinence clinique
 - Approche rationnelle
 - Faits objectifs
 - Appréhender les craintes de manière rationnelle

Merci pour votre attention

Eanton de Vaud

Historique

- 2012
 - Texte dans la législation suisse (ORaP 74.7)
 - Recommandations

Requirements for medical physicists in Nuclear Medicine and Radiology

Guidelines and recommendations for application of the

radioprotection ordinance Article 74

- Par où commencer ?

34

Teanton de Vaud

Qualité d'image : 2012-13

- Fantôme CT : Catphan® 600
- Mesures "classiques"
 - Calibration, épaisseur de coupe, resolution spatiale, etc.

Tomodensitométrie : 2012-13

- Application du document de juin 2011

 Principalement QA
- Points forts
 - Premier tour du parc technique romand
 - Connaissances accrues
 - Mise en évidence de pratiques "exotiques"
- Problèmes
 - Qualité d'image : pas de pertinence clinique
 - Dosimétrie : comparaison d'examens ≠

Comparaison avec des humains

• Les résultats des modèles sont comparés aux humains

Radioscopie

- Interventionnel diagnostique
 0.6 %
- Interventionnel therapeutique
 - 0.4 %
 - 1 % des examens

Exposure of the Swiss population by radiodiagnostics: 2013 review, R. Le Coultre et al., Radiat Prot Dosim (2015), doi: 10.1093/rpd/ncv462

Contribution en dose - Int. diag. : 6.8 % - Int. théra. : 6.2 % 13 % de la dose

39

RADPAD • Draps stériles

• Calots chirurgicaux

Source : RADPAD

Efficacité des draps stériles

- Dosimètre : DMC 3000
- Mesures en conditions cliniques

Chirurgie vasculaire (BOP)

Pas de protections Pb autres

Radpad (patient)	# procedures	Fact. de diffusé [µSv / (Gy cm²)]
Sans	5	$2.9 \pm 0.5^{*}$
Avec	3	1.1 ± 0.5

*Similaire à l'exposition d'un opérateur de cardiologie interventionnelle ne disposant d'aucune protection structurelle.

Evolutions technologiques

Angiographies et angioplasties cérébrales	# procédures
Avant mise à jour	388
Après mise à jour	22

- P_{KA} moyen – Réduction de 63 %
- K_{a,r} moyen – Réduction de 72 %
- Temps de scopie moyen (~pratique clinique) Augmentation de 5 % (non significatif)

(~risques stochastiques) (significatif)

(~risques tissulaires)

(significatif)

System upgrade on Philips Allura FD20 angiography systems: Effects on patient skin dose and static image quality, N. Ryckx, M. Sans-Merce, R. Meuli, J.-B. Zerlauth, F. R. Verdun, Radiat Prot Dosim, 2015.

Exemple 2: Optimisation du protocole d'acquisition/reconstruction d'image ⁹⁰Y PET post SIRT

Possibilité d'imagerie ⁹⁰Y quantitative post-traitement

Déposition locale et dosimétrie pour :

- > Valider la dosimétrie prédictive basée sur ^{99m}Tc-MAA SPECT/CT
- Quantifier de potentiels shunts extra-hépatiques
- Alimenter des études de réponse en dose

Point-clé : Optimisation des paramètres d'acquisition et reconstruction ⁹⁰Y PET

